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Iterated scattering map for rearrangement scattering 
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Fachbereich Physik, UniversitPt Bremen, 2800 Bremen. Federal Republic of Germany 

Received 4 June 1990, in hal  form 14 January 1901 

Abstract. An iterated scattering map for t~ee-particicrearrangement scaitering 
is constructed by forming sequences of scattering trajectories. This map works in a 
similar way to the well known PoincarCmap for bound t,rajectories. It providesuseful 
information for investigating the integrability properties of the system. A numerical 
example is shown for the Calogero-Mora system with hyperbolic potential functions. 

1. Introduction 

In two previous papers [l,  21 an iterated scattering map M was constructed for elastic 
and inelastic two-particle scattering. In a first step, a map from the set of incom- 
ing asymptotes into the set of outgoing asymptotes is given by following the actual 
scattering trajectories of the system. !n a second step incorr.ing and oztgoing a y y -  
totes with identical values for the impact parameter and momentum are identified. In 
inelastic scattering the values of the internal variables are also kept the same. The 
composition of these two steps provides a map M from the set of incoming asymptotes 
into itself. This map can be iterated. In the case of a chaotic deflection function, this 
map is not well defined on a subset of measure zero (the set of pre-images of the stable 
manifolds of unstable localized orbits). This is not a serious problem for the numerical 
construction of the map. 

The main motivation of this construction was to obtain a numerical test for the 
existence of a second conserved quantity IC, which fits together with the asymptotic 
properties of the Hamiltonian H [3]. By fitting together we mean: {IC, H )  = 0 and 
{I<,, H,] = 0, where I<, and H ,  are the asymptotic limit forms of IC and H .  This 
kind of asymptotically compatible integrability will be explained in section 3 in more 
detail. If the set of all asymptotes is foliated into lower dimensional subsets invariant 
under M ,  then there exists a conserved quantity, which is independent of H .  If a 
second conserved quantity does not exist a t  all or if the asymptotic properties of the 
second conserved quantity do not fit together with the asymptotic properties of H ,  
then the iterated map M shows chaotic behaviour of the kind which is typical for a 
perturbed twist map. 

Recently the scattering map M turned out to be important for the investigation 
of quantum scattering chaos [4]. The unstable periodic points of M determine the 
statistical properties of the semiclassical S-matrix and they determine whether the 
S-matrix behaves like the one for a random matrix system. A behaviour of random 
matrix type is believed to be the quantum criterion for chaos. 
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This remarkable observation leads to an intriguing problem: for the quantum S- 
matrix to possess generic properties i t  is sufficient for the iterated classical scattering 
map to be chaotic. I t  is not necessary for the classical deflection function to be 
chaotic, which bas been taken as the criterion for classical scattering chaos (see e.g. 
the review in [5]). However, if the deflection function is chaotic, then M is even more 
chaotic. With 
these relationships in mind, we have to think seriously about the idea of taking the 
properties of the iterated scattering map as the criteria for scattering integrability of 
classical systems. 

We have mentioned these problems in order to give some additional motivation 
for considering the iterated scattering map at  all. In this paper, however, we will not 
investigate the connection between M and the quantum behaviour; instead we will 
elaborate on the construction of M itself. Because of the open problems, in which M 
is involved, i t  is desirable to gain better insight into the properties of M for many 
different systems and preferably for systems of different qualitative structure. So far 
the construction of M has only been given for two-particle scattering without rear- 
rangement. However, because of the new interest in A4 we feel justified in generalizing 
its Construction to reactive scattering with rearrangement in this paper. In section 2 
the construction of M is given. In section 3 we show the way in which M provides 
information on the integrability properties of the system and in section 4 we illustrate 
the ideas presented by the numerical example of the Calogero-Moser system with 
hyperbolic potential functions. Section 5 contains some final remarks. 

However, M can be chaotic without a chaotic deflection function. 

. 2. Construction of the sca t te r ing  map 

The map to be constructed operates on the set of all incoming asymptotes, which will 
be denoted by A'" in the following. First we label the asymptotes in an appropriate 
way. 

For the moment let us assume that the system consists of three point particles A, B 
and C without any internal degrees offreedom. The generalization to more than three 
particles or to particles with additional internal degrees of freedom is straightforward; 
but it only makes the notation more cumbersome. 

Let the Hamiltonian of the complete system be 

The position coordinate of particle i is q; ,  its momentum is p i  and its mass is mi. 
The two-particle potentials V, should be sufficiently fast decreasing, so that all the 
asymptotic conditions of scattering theory are fulfilled. 

We have four different asymptotic arrangement channels. In channel 0 all three 
particles are free and well separated from each other. The asymptotic Hamiltonian of 
channel 0 is just the kinetic energy 

P i  +A+& 2 

H, = - 
2mA 2m, 2mc 

In channel A particle A is free and well separated from B and C, which form a bound 
state. The asymptotic Hamiltonian in channel A is 

HA = H O  + vA(qB - 9.C) .  (3) 
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Channels B and C and their asymptotic channel Hamiltonians are defined in an ana- 
loguous way by interchanging the indices A, B and C. 

The system has nine degrees of freedom and the phase space is eighteen- 
dimensional. The motion of the centre of mass can be separated out and is described 
by giving the values of the total momentum 

PS=PA+PB+PC 

and the position of the centre of mass 

(4) 

= (mAqA + mBqB + m C q C ) / M  ( 5 )  

where M = mA + mR + m,. For simplicity we describe all scattering events in the 
centre of mass coordinate system, where S E 0 

We label the asymptotes by giving eleven quantities for the relative motion, which 
are conserved in the asymptotic region. For the asymptotes in channel A we observe 
the motion of a free particle A against a hound state formed of the particles B and C. 
For the description of this asymptotic motion we use the coordinate 

P,. 

and its conjugate momentum 

nA = [ m A ( p B  + P C )  - (mB + m C ) p A 1 / M .  (7 )  

The corresponding reduced mass is 

P A  = m A ( m ~  + m c ) / M .  (8) 

For the internal motion of the B-C bound state we use the coordinate 

YA = q B  - q C  (9) 

and its conjugate momentum 

The corresponding reduced mass is 

aA mBmC/(mB + mC). 

In these coordinates the channel Hamiltonian H A  has  the form 

The relative free motion between the two fragments is determined by treating IIA and 
a corresponding two-component impact parameter bA in the same way as in [I] for the 
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scattering of two structureless particles. For the internal motion of the B-C bound 
state let us introduce the internal Hamiltonian 

If hA is not completely integrable and the internal motion of the B-C system can be 
chaotic, then the scattering rr.ap to  be constrxted CBE also a.!;, be chaotic. More 
interesting are those cases in which all internal motions of two-particle fragments are 
completely integrable. From now on we assume this property to hold for our system 
under investigation. Then h, can be written as a function of a three-component 
internal action variable I, only and i t  does not depend on the conjugate angle variable 
V A ,  -* r .  is ._ rnnrt.ant. in the ;~rympt;otic region of channe! A and_ c.a" he iised t o  !she! 
asymptotes. (P, moves asymptotically according to the equation 

In analogy to  what has been done for inelastic scattering in [2] we introduce a reduced 
angle ~A by subtracting the asymptotic motion from the actual (oA. +A is constant 
along asymptotes of channel A and it gives the relative phase between the internal 
and external motion. 

$A = 'PA - W A P A ~ A .  Q A / n : .  (15) 

Such reduced p;izes liave been used before io describe mynipioiej of mo:ecu;ar 
tering motion [6, 71. 

It may be appropriate to use the total energy E as one of the asymptotic variables 
because of the conservation of energy. We can replace II, by E and by aA, the two- 
component direction of nA. In total we label any incoming asymptote of channel A 
by the values of: E , a A , b A , I A r + , .  

an interchange of indices in equations (6)-(15). 
Therefore we may use the following 

quantities to  label asymptotes in channel 0: Relative momentum U, between particles 
B and C as defined in (10); relative momentum U ,  between particles A and B defined 
in analogy to  (10) by interchanging indices. Instead of one of these momenta-e.g. 
Uc-we can also use the total kinetic energy E and the direction -rC of U,. In 
addition we use the impact parameter b, of particle A relative to particle B and the 
impact parameter b, of particle C relative to particle B. As a last quantity we need 
a relative shift between the A-B motion and the B-C motion. We may use 

'PL- --..--+.A:- :-hl-- A -h---,,L El -",I P "-" ,.l.tn;-..4 ;" thn ..,.,., I.., I,,= 'IaJ"1p'uL" I a L I a I U L s D  U, C L l a l l l l r l D  " a,," " a L r  " " Y a L I I I c "  111 Y l l b  YD111L . *ay  v y  

In channel 0 all momenta are conserved. 

i o =  o A Y A ' U A f U : -  O C Y C ' u C / u ~ '  (16) 

Direct computation shows that (d/dt)$, = 0 under the motion generated by H,. In 
total, asymptotes in channel 0 can be labelled by the values of E,yC, U,, bA,bC, Go. 
Outgoing asymptotes can be labelled in a similar way to the incoming ones. 

By 8 we denote the flow generated by H ,  and by 0, we denote the flow generated 
by H,. 
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Compared with two-particle scattering the decomposition of A'" is new. In it the 
complete set of all asymptotes is decomposed into several connected components, one 
for each arrangement channel 

A'" = A t  U.42 U A g  I.) Az, 

We construct the map M :A'" -A'" using thesame basic procedure as in [ I ,  21: First 
w c  I,... wJu,c Y b l U C :  Y U, LIIC b u b a  energy, 
process. Next we choose an arbitrary initial point zo E dko, which belongs to the 
correct energy E and where no labels any energetically open channel. We construct the 
scattering trajectory with initial condition zo. This trajectory is created by applying 
@ on the initial condition zo. 

If zo does not belong to the exceptional subset of measure zero of trajectories 
=hi& Ei!! get shck  in the interzction region znd Urhich does not possess i n  out- 
going asymptote, then the trajectory finally reaches the outgoing asymptotic region 
at some final point zb E A:!%". Next we switch to the asymptotic Hamiltonian H,b 
as generator of the dynamics, let the time run backwards and follow the trajectory 
starting in zb under a-:, i.e. the timereversed motion generated by Hna. Under this 
motion all the quantities (nb, E,anb,  bna, in the case of nb E {A,  B,C) or 
(E,7c,Cr,,l bA, bC, pbo) in ihe case of nb = O are consiani. Finaiiy this iime-reversed 
trajectory arrives a t  some initial asymptote zI E dk, in channel nl, where nl = ti;. 
The numerical values of all components of z1 coincide with those of 26. Thereby the 

... ̂ c.. v-L-*l.- * - . - I  ... L:_L ... : I ,  L ^  1.11 .,.--,La :A--"&:.... 
WlllL' l  W l l l  "e C U I I ~ e I Y e "  a,, awug L l l C  IIICL-LLIIVII 

n o  

map 

M :A!" - A'" 

2 0  c = 1  

is completed and the next step of the iteration can start a t  the point z l .  
The combination of the motion generated by the full Hamiltonian with the time- 

reversed motion generated by the asymptotic Hamiltonian parallels the construction 
of the quantum S-operator, where the evolution operator for the full Hamiltonian is 
ccmbined with the Inver3e evolxtior. operator for the aymptot ic  Aami!tonian. This 
parallelity between M and S explains the connections between classical and quantum 
properties found in [4]. 

3. Integrability properties 

Let us assume that a function I<, which is independent of H ,  exists on the phase 
space, such that 

{ I < , H }  = 0. (17) 

{IC",  H"} = 0 (18) 

I<+ = lim I< (19) 

In addition let conserved channel quantities I<", n E {O,  A ,  B, C) exist, such that 

for all n E {0, A,  B,  C} and ICn is the asymptotic limit of I< in channel n. For example 
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where the limit is to  be taken such that 1 qB - qA I-+ m,I qc - qn I-+ 00 and 
I qB - qc I stays small. We take corresponding limits to define the other ICn. I< is 
conserved under 0. In the outgoing asymptotic region in channel n the values of It' and 
I<, coincide. 0;' conserves the value of It', and in the incoming asymptotic region, 
where we switch back to  0, the values of I<, and I< coincide again. Therefore, the 
value of I< is conserved under the complete action of the map M and the asymptotic 
space A'" is foliated into level sets of I<, which are invariant under M .  Let us call 
a conserved quantity wiih these properties an ksympioiicaiiy compatible constant of 
motion'. 

Let the system have N degrees of freedom and accordingly the asymptotic space 
A'" for a fixed value of E is 2(N - 1)-dimensional. Let us assume that the system 
fulfils the following conditions. 

There exist N-1 independent asymptotically compatible constants of motion It'(j), j = 
, N - 1 in involution, i.e. {I<('), I d ' ) }  = 0 and { K ( j ) , H )  = 0 for all i , j .  The 

asymptotic limit of It'(J) in channel n is I&) with { I&) ,  I<!'} = 0 and {I{,?), H,,} ='O 
, N -  1 and all n. In such a case the system is completely integrable in 

the sense of Liouville and, in addition, this integrability is transferred to the asymptotic 
spaces A,, which are foliated into ( N  - 1)-dimensional level sets of the functions I&). 
This foliation is conserved under the iterated map M. Let us call such a situation 
'complete asymptotically compatible integrability'. 

Now the question arises as to  whether we can turn the argument around and 
whether the system has the property of complete asymptotically compatible integra- 
bility whenever there is a smooth foliation of A into ( N  - l)-dimensional level sets 
and this foliation is conserved under M .  Unfortunately, there is no simple answer. 
HI a pre,rr,,r,rary srep a ayaberr, W1L11 b W V  t . b I c l l b l a l  ut.g,era U, LIt%CUU''I allu 

a two-dimensional asymptotic space A for each value of E like the example in sec- 
tion 4. Assume that we apply the iterated scattering map and find afoliation of A into 
one-dimensional subsets, which are invariant under M .  In a first step we construct a 
function J on A'" such that the level sets of J are the subsets invariant under M .  In a 
second step we construct a continuation of J on the total phase space. To each point 
-.-FtL.. ..l.--- --""- ...n &.Im t h n  ir.,;n*tnr.i +h.A..mh nnnAa. A f,4In... :t h o p L . r 7 m ~ A o  y "L U,,= y,,awr; "y',Lc .*c U L n r  Y B L C  " L Y J C C Y " ' ,  Y . A L " Y , y L  p Y . l " C L  1 U,." *".I".. I" "U*n..Ul"1 

into the incoming asymptotic region and arrive a t  some point z ( p )  E A'" and define - 

A -  ~ -..I:-.: L . -  .... ..-.:A.. ..... I . _  _._!*L I ... ̂ --..- 11.1 I ---.-- -'-c--->-- --, w e  cu,,sLuc.r 

, 

W P )  = J ( ~ P ) )  (20) 

per construction I< is invariant under 0. The existence of the foliation of A'" which 
is invariant under M together with the assumed complete integrability of the channel 
Hamiltonians H ,  excludes the possibility that the flow 0 is chaotic. The time-reversed 
flow 0;' could not combine with a chaotic 0 to give an integrable scattering map M 
in total. As long as 0 is not chaotic, the construction of It' previously outlined gives 
a non-chaotic function It'. The problem is to demonstrate the smoothness and differ- 
entiability properties of It' constructed in this way. Even if H is a smooth function, 
it, is not. ant,omatically guaranteed that the I( created by the transport of asymptotic 
initial conditions is also smooth (for some discussion of related problems see [SI). 

If for a system with N degrees of freedom the iterated scattering map provides a 
foliation of A for fixed E into ( N  - 1)-dimensional subsets, then we construct in a first 
step ( N -  1) quantities J ( J )  defined on A, which are independent and in involution and 
whose level sets generate the foliation created by M. In a second step we transport 
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them by the flow in order to obtain corresponding quantities I d j )  defined on the 
whole phase space. However, we again run into the same smoothness problems as in 
the case of two degrees of freedom. In the case of the smoothness of all IC(') complete 
asymptotically compatible integrability would be established. 

Because of the existence of the foliation of A'" under M the values of If(') must 
be conserved under the feedback of outgoing asymptotes into incoming asymptotes 
by a;' i.e. the asymptotic limit forms of K(J) must be a set of functions If?) each 
conserved under H ,  . 

~ 

4. Example of the CaIogero-Moser system 

The ideas presented so far will be illustrated by an example for a particular Hamilto- 
nian. To make things as simple as possible, we take a one-dimensional position space, 
so that after the separation of the centre of mass motion only two essential degrees 
of freedom remain. A'" is three-dimensional. Because of the conservation of the total 
energy E we only need two-dimensional subsets of A'" belonging to a fixed value of E 
and plots of the iterated scattering map M can be presented. For the case of a one- 
dimensional position space we use the following coordinates in A'": E and (In,$,,) 
for the channels A, B, C or (UA, G o )  for channel 0. 

A good example for demonstration is the Calogero-Maser system with hyperbolic 
potential functions [9]: 

H = -+-+ P i  P i  P t  - - DA[cosh(qB -qc)]-2 +D,[~inh(q~-q,)]-~ - D C [ ~ ~ ~ h ( q A - q B ) ] - 2 .  
2 2 2  

- (21) 

We have set mA = mg = mc = 1 leading to M = 3, p,, = $,U" = f for n E {A, B, C}. 
The potential strengths D, are free parameters. In terms of the variables defined in 
(6)-(15) we write H in the form 

H = - + -  + U; - D , [ c o s ~ ( Y ~ ) ] - ~  + DB[sinh(QA + yA/2)]-' 
P: 3n; 
6 4  

- Dc[cosh(QA - Y A / ~ ) ] - ~ .  (22) 

The asymptotic limit of channel A is the limit I QA 1- 00. Therefore, 

In channel A we use the action-angle variables 

I ,  = fi - J D , [ ~ o s h ( y ~ ) ] - ~  - U: (24) 

h, = -(a - I,)2 

W A  = Z ( 6 -  I,). 
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The corresponding expressions for channel C are obtained by an interchange of indices. 
Channel B does not exist in system (21) because the interaction between A and C is 
always repulsive and no bound state of these two particles exists. 

As has been explained in [9], in the case of D ,  = D, = D ,  = D there exists the 
conserved quantity 

I( = PAPBPc+P~D[COSh(PB-Pc.)]-' - P ~ D [ s i n h ( P ~ - P c ) l - ~ + P c D [ c o s h ( q ~  -PB)]-'. 

(28) 

In this integrable case the trajectories always end in channel C ,  when they start in 
channel A and vice versa. In addition, the final action I ,  has the same value as the 
initial action I,. The only effect of the scattering process is a shift of $, whose value 
depends on I .  

In the limit I Q ,  1- M, i.e. in the asymptotic limit of channel A we find the 
following limiting form of K 

= PAPBPC +pAD[cosh('?B - '?C)]-'. (29) 

A direct computation shows that {I<,, H A }  = 0. By interchanging indices in (29) 
we obtain K c  fulfilling { K c ,  H c }  = 0. Of course, the numerical values of IC and I<, 
coincide in the limit of channel n. K is conserved under and I<, is conserved under 
@;I, The iterated scattering process always stays on the subset of A'" belonging to 
one particular value of K ,  i.e. M is asymptotically compatible integrable and foliates 
A'". The leaves are the lines I = constant ranging over both components A i  and 
As, M is a pure twist map in this integrable case. 

As soon as all three D, are no longer equal, the integrability of H is destroyed and 
M no longer foliates A'" into invariant lines as figures 1 and 2 demonstrate. In figure 1 
we have chosen E = -0.1, D, = 1, DB = 1 and D ,  = 0.8. Because E < 0, channel 0 
is closed energetically and A'" consists of the two connected components A i  and As. 
As figure 1 shows, the invariant lines partly still exist and partly they are destroyed 
and replaced by chaotic regions and secondary structures. Several initial conditions 
are marked by crosses. Similar structures in the two channels at similar values of I 
belong to the same initial point. The  large chaotic region ranging over both channels 
is represented by 1000 iterates of the point I = 0.069,$ = 3.066 in channel C. 

In figure 2 another example is given for E = 0.2,DA = l , D B  = 1.05 and 
D, = 0.95. This time E > 0 and channel 0 is open energetically. However, it is 
not interesting to follow the motion in channel 0. As soon as a sequence of trajecto- 
ries starting in channel A or C has rzached channel 0, it stays in channel 0 in almost all 
cases and $,, monotonically drifts to large values. In the same way i t  is not interesting 
to start the iteration in channel 0 and to follow iterated trajectories before they reach 
channel A or C. In the plot we do not show A t  at all. If the iteration reaches a point 
of channel A or C, whose image lies in channel 0, then this point of channel A or C is 
marked by a small square in the plot. 

In figures 1 and 2 we see structures which are t,ypical for perturbed twist maps 
[lo,  111. Along K A M  lines the map always jumps from channel A to channel C and 
vice versa in the integrable case. In the chaotic region we find points whose image 
lies in the same channel, In our figures this mainly happens in channel A, because for 
our parameter values the binding force between B and C is stronger than the binding 
force between A and B. 
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0 6.28 
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Figure 1. Iterated scattering map for system (21) for parameter valuer Da = 
1 , D g  = 1,Dc = 0.8 and energy E = -0.1. A few hundred iterates of same initial 
points (marked by crosses) are plotted. 

One remark on the frame boundaries in the figures: the maximally possihle value 
for I ,  in channel n is given by 

The  figures show that  if the D, are not equal, then A'" is not foliated into lines 
invariant under M and asymptotically compatible integrability does not exist. 

5.  Final remarks 

In this paper the iterated scattering map has been constructed for rearrangement 
scattering. For simplicity we have considered the case of three structureless point 
particles. In the case of particles with internal degrees of freedom we add additional 
components t o  the quantities I and $ introduced in section 2, add the corresponding 
dimensions t o  A and proceed as before. Thereby we combine the method of [2] to 
treat inelastic scattering with internal degrees of freedom with the method to treat 
rearrangements given in this paper. The  case of more than three fragments can be 
treated following the same basic pattern as in the case of three fragments shown here. 
We iteratively add the motion of a further particle relative t o  the centre of mass of 
the other particles already present before. This creates a hierarchy of relative position 
and momentum coordinates and reduced masses. Equations (6)-(16) are the first two 
steps in this hierarchy. 
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El ;. . - .  . .  . .  
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0 6.28 

Channel A 
Angle 

. .  
. ,  . .  

0 

...................... t---- ^ I 
b 6 . k  

Angle 
Channel C 

Figure 2. Iterated scattering map for system (21)  for parameter values D A  = 
1, DB = 1.05, Dc = 0.95 and energy E = 0.2. A few hundred iterates of some initial 
points (marked by crosses) are plotted. Points whose images lie in channel 0 are 
marked by sqnares. 

The example of section 4 indicates that the complete integrability of the iterated 
scattering map is an exceptional case which is not structurally stable under pertur- 
bations of the system. In accordance, M becomes chaotic in the generic case in the 
same way as a pure twist map becomes chaotic under generic perturbations. 

Unfortunately we could not give a definite answer to the problem of equivalence 
between complete asymptotically compatible integrability and the absence of chaos 
in the iterated scattering map. Whereas the conclusion is evident in one direction i t  
remains an open problem to find sufficient conditions for the reverse direction to hold. 
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